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Hausdorff momentum problem and its relations to spectral theorem for bounded Hilbert
space operators are treated. A generalization for some ordered algebras is shown, where
projections are replaced by idempotents.
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1. INTRODUCTION

Recall that the classical Hausdorff problem is the following: given a set of
real numbers{vn}∞n=0, find a probability measureµ on the Borel subsets of the unit
interval [0, 1] such that

vn =
∫ 1

0
tn dµ(t), n ≥ 0.

Hausdorff has shown that the answer is positive iff the sequence is completely
monotone (see Definition 1 below) (Hausdorff, 1921a,b, 1923). For a review of
the momentum problem see Shohat and Tamarkin (1943) and Widder (1946),
for results on the Hilbert space operators see Riesz and Sz.-Nagy (1955). The
Hausdorff momentum problem in the context of effect algebras has been treated
in Duchoň et al. (1997).

In the present paper, we relate the momentum problem to the spectral theorem.
In the first part, we give a detailed solution of the momentum problem for bounded
self-adjoint (s.a.) operators on a Hilbert space. In comparison with Duchoˇn et al.
(1997), more direct methods are applied. Then we show that the solution of the
momentum problem yields an alternative proof of the spectral theorem. Finally,
we extend the results to some ordered algebras.
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2. HAUSDORFF MOMENTUM PROBLEM FOR HILBERT SPACE
OPERATORS AND SPECTRAL THEOREM

Let H be a Hilbert space,L(H ) the lattice of all closed subspaces ofH ,
S(H ) the set of all (bounded) s.a. operators andE(H ) the effect algebra of all s.a.
operatorsA with 0≤ A ≤ I . By an observable we mean a POV measure on Borel
subsets of the interval [a, b] of real line, a state is a probability measure onL(H ).
By Gleason’s theorem, states correspond to positive operatorsD with trace 1 such
that

m(P) = trDP, P ∈ L(H ).

Hence, states correspond to the positive linear functionals on the algebraB(H ) of
all bounded operators onH of the formB 7→ trDB. The restriction of a state to
E(H ) is a state onE(H ). Observe that ifs is a state andy is an observable, then
E→ s(y(E)) is a usual probability measure onB([a, b]).

We shall say that a sequence (an)∞0 of elements ofS(H ) is a solution of
the observable momentum problemif there is an observable (POV measure)y :
B([a, b]) → S(H ) such that

s(an) =
∫ b

a
tns(y(dt))

for every states.
First we take for [a, b] the unit interval [0, 1].

Definition 1. Let (vn)∞0 be a sequence of numbers. Define, fork = 0, 1, 2,. . . ,
the operator1k by

10vn = vn, 11vn = vn − vn+1

1kvn = vn −
(

k

1

)
vn+1+

(
k

2

)
vn+2+ · · · + (−1)kvn+k, n = 0, 1,. . . .

We say that the sequence (vn)∞0 is completely monotoneif 1kvn ≥ 0, where
n, k = 0, 1,. . . .

Now Hausdorff momentum theorem in the classical probability theory says
that for a sequence (vn)∞0 to be the moment sequence of some unique positive mea-
sureµ on [0, 1] it is necessary and sufficient that (vn)∞0 be completely monotone.
In the following theorem we extend this result to the POV-observable momentum
problem. First we need the following definition.

Definition 2. Let (an)∞0 be a sequence of effects. We shall say that this sequence is
completely monotoneif for every vector statesψ , (ψ ∈ H, ‖ψ‖ = 1) the sequence
(sψ (an))∞0 is completely monotone.
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Since every state can be expressed as a convex combination of vector states,
a sequence (an)∞0 of effects is completely monotone if and only if for every states
the sequence (s(an))∞0 is completely monotone.

Theorem 1. A sequence of effects(an)∞0 is a solution of the POV-observable
momentum problem, i.e., there is a POV measure y: B([0, 1])→ E(H ) such that

an =
∫ 1

0
tny(dt), n = 0, 1,. . . .

if and only if(an)∞0 is completely monotone.

Proof: Let there exist an observabley such that

an =
∫ 1

0
tny(dt), n = 0, 1,. . . ,

that is,

〈anψ, ψ〉 =
∫ 1

0
tn〈y(dt)ψ, ψ〉

for every unit vectorψ ∈ H . Then asE 7→ 〈y(E)ψ, ψ〉 is a probability measure
on B([0, 1]), (sψ (an))∞0 is a solution of the classical momentum problem for this
probability measure, and hence this sequence is completely monotone.

Conversely, assume that (an)∞0 is completely monotone. Then for every unit
vectorψ ∈ H , the sequence (〈anψ, ψ〉)∞0 is completely monotone. Therefore, by
the classical result, there is a measureµψ on B([0, 1]) such that

〈anψ, ψ〉 =
∫ 1

0
tnµψ (dt), k = 0, 1,. . . .

Since the effectsan are nonnegative operators, the mappingψ 7→ 〈anψ, ψ〉 is a
nonnegative quadratic form onH for everyn.

For anyφ, ψ ∈ H we then have, for everyn = 0, 1,. . . ,∫ 1

0
tnµψ+φ(dt)+

∫ 1

0
tnµψ−φ(dt) = 2

(∫ 1

0
tnµψ (dt)+

∫ 1

0
tnµφ(dt)

)
.

Using Weierstrass theorem,tn can be replaced byf for any continuous function
f defined on [0, 1]. This implies that

µψ+φ(E)+ µψ−φ(E) = 2(µψ (E)+ µφ(E))

for everyE ∈ B([0, 1]).
Similarly we prove that

√
µψ+φ(E) ≤ √µψ (E)+√µφ(E).
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This shows thatψ 7→ √µψ (E) is a seminorm satisfying the parallelogram law.
Therefore, there is a symmetric sesquilinear functional (ψ, φ) 7→ νE(ψ, φ) such
thatνE(ψ, ψ) = µψ (E). It follows by Riesz theorem that there is an s.a. operator
y(E) such thatνE(ψ, φ) = 〈y(E)ψ, φ〉. Sinceµψ is a probability measure, it is
clear that

0≤ µψ (E) = 〈y(E)ψ, ψ〉 ≤ 1

for everyψ , hencey(E) is an effect and the mappingE 7→ y(E) is a POV measure.
We obtain that, for everyψ ∈ H ,

sψ (an) =
∫ 1

0
tn〈y(dt)ψ, ψ〉 =

∫ 1

0
tnsψ (y(dt)),

which can be written as

an =
∫ 1

0
tny(dt). ¤

Now we will show that the solution of Hausdorff momentum problem yields
an alternative proof of spectral theorem for Hilbert space effects.

Let A ∈ E(H ), i.e. A is an s.a. operator with 0≤ A ≤ I .
We have

10An = An, 11An = An − An+1 = (I − A)An

1k An = An −
(

k

1

)
An+1+

(
k

2

)
An+2+ · · · + (−1)k An+k

= (I − A)k An, n = 0, 1,. . . .

It is known that the product of two commuting positive operators is a positive oper-
ator. From the assumption 0≤ A ≤ I it follows that{An} is completely monotone.
Hence there exists a uniquePOVmeasurey : B([0, 1])→ E(H ) such that

An =
∫ 1

0
tny(dt), n = 0, 1,. . . . (1)

Now we would like to show that the set of valuesy(E), E ∈ B([0, 1]), is a system
of idempotents onH. For any two polynomialsp andq we have, using elementary
“functional calculus” forA (Berberian, 1966)

p(A)q(A) =
∫ 1

0
p(t)q(t)y(dt)

Let f be any real-valued continuous function on [0, 1]. By Weierstrass theo-
rem, there is a sequence of polynomials{pn} uniformly converging tof . Put

‖ f ‖∞ = sup{| f (t)| : t ∈ [0, 1]}.
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It follows

‖p(A)‖ = sup{|〈p(A)ψ, ψ〉| : ψ ∈ H, ‖ψ‖ = 1}

= sup‖ψ‖=1

∫ 1

0
|p(t)|〈y(dt)ψ, ψ〉

≤ ‖p‖∞
∫ 1

0
〈y(dt)ψ, ψ〉 ≤ ‖p‖∞.

Therefore

‖pn(A)− pm(A)‖ ≤ ‖pn − pm‖∞ → 0,

and by the norm-completeness ofB(H ), there is an s.a. operatorf (A) such that
‖pn(A)− f (A)‖ → 0. It can be easily checked thatf (A) does not depend on
the choice of the sequence{pn}. Let f , g be any continuous functions on [0, 1]
and {pn} and {qn} sequences of polynomials converging uniformly tof and g
respectively, then

‖pn(A)qn(A)− f (A)g(A)‖
≤ ‖pn(A)qn(A)− f (A)qn(A)‖ + ‖ f (A)qn(A)− f (A)g(A)‖
≤ ‖qn(A)‖ · ‖pn(A)− f (A)‖ + ‖ f (A)‖ · ‖qn(A)− g(A)‖
≤ K‖pn(A)− f (A)‖ + ‖ f (A)‖ · ‖qn(A)− g(A)‖ → 0, n→∞,

whereK is a bound of the sequence{qn}.
Let C be a closed subset of [0, 1],χC its characteristic function. By Halmos

(1950), there is a monotone sequence{ fn} of continuous functions decreasing to
χC. Defining gn = f 2

n , we have alsogn ↓ χC. By monotone convergence theo-
rem,

∫ 1
0 fn〈dyψ, ψ〉 → ∫ 1

0 χC〈dyψ, ψ〉 for everyψ ∈ H . That is,
∫ 1

0 fn dy →∫ 1
0 χC dy= y(C) strongly,

∫ 1
0 gn dy→ ∫ 1

0 χC dy strongly. That isfn(A)→ y(C)
strongly, gn(A)→ y(C) strongly. Sincegn(A) = fn(A)2 by the previous para-
graph, we have for any vectorψ ∈ H ,

〈y(C)ψ, ψ〉 = lim
n→∞〈gn(A)ψ, ψ〉

= lim
n→∞〈 fn(A)ψ, fn(A)ψ〉 = 〈y(C)ψ, y(C)ψ〉

by the continuity of inner product. Thusy(C) = y(C)2 for any closed subsetC of
[0, 1]. By regularity of POV measures (Berberian, 1966),y(E) is an idempotent
for every Borel subset of [0, 1].
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More generally, ifA is an operator inS(H ) such thataI ≤ A ≤ bI, a < b,
we put

B = A− aI

b− a
.

ThenB is an s.a. operator with 0≤ B ≤ I . If we use the substitution in (1) forB
we obtain a representation for the successive powers ofA:

An =
∫ b

a
tnz(dt), n = 0, 1,. . .

wherez( ) is an observable with the same properties asy( ), but corresponding to
the interval [a, b].

We have thus proved the following.

Theorem 2. If A is an s.a. operator inS(H ) such that a I≤ A ≤ bI , then there
exists a unique observable y: B(R)→ S(H ) taking values in a commutative
family of idempotents such that

A =
∫ b

a
ty(dt),

with y satisfying y(∅) = 0, y([a, b]) = I .

3. A GENERALIZATION TO SOME ORDERED ALGEBRAS

LetR be an algebra with unit 1 such that (R,+) forms a partially ordered
abelian group with a positive coneR+, and the following conditions are satisfied
for everya, b ∈ R+:

(R1) If ab= ba thenab∈ R+.
(R2) a(ba) = (ab)a = abaandaba∈ R+.
(R3) aba= 0 impliesab= ba= 0.
(R4) (a− b)2 ∈ R+.
(R5) 1∈ R+.
That is,R is an “effect ring” in the terminology of Foulis (2000).

Observe that for anya, b, c ∈ R+, c commuting with botha andb, we get
by (R1)

a ≤ b⇒ ac≤ bc. (2)

For everya ∈ R we may define powers by induction, i.e. we put

a0 = 1, a1 = a, an = an−1 · a, n > 1.
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An elementp ∈ R+ is an idempotent (or a projection) ifp2 = p. We have by
(R4) that 1− p ∈ R+, so that 1− p is also an idempotent. It has been proved in
Greechieet al.(1995), thatp is an idempotent if and only ifp∧ (1− p) = 0, and
that the setP(R) of all idempotents forms an orthomodular poset.

We will say that an ordered algebraR is Dedekindσ -completeif for every
monotone increasing sequence of its elements that is bounded from above the
supremum exists.

Property (R2) implies that for anya ∈ R+ and anyj , k ∈ N, aj ak = aka j =
a j+k.

For a sequence{an} of elements of an ordered algebraR we define

10an = an,

1kan = an −
(

k

1

)
an+1+

(
k

2

)
an+2+ · · · + (−1)kan+k, n = 0, 1,. . .

Definition 3. We will say that a sequence{an} of elements of an ordered algebra
R is completely monotoneif 1kan ≥ 0 for everyn, k = 0, 1,. . .

Proposition. LetR be an ordered algebra. Then for every element a∈ R, 0≤
a ≤ 1, the sequence{an} is completely monotone.

Proof: Owing to (R1) and (R2),

k∑
j=1

(−1) j

(
n

k

)
an+ j = an(1− a)k ≥ 0. ¤

A stateonR is a bounded positive real linear functional that evaluates the unit
1 ∈ R by 1. Recall that a statem onR is normalif an ↑ a impliesm(an)→ m(a).

A set M of states onR is ordering if

R+ = {a ∈ R : m(a) ≥ 0 ∀m ∈ M}.
If M is ordering it isseparating, i.e. if m(a) = m(b) for all m ∈ M thena = b.
Indeed, we havem(b− a) = m(a− b) = 0 for allm ∈ M , henceb− a ∈ R+ and
a− b ∈ R+, hencea = b. If M is ordering, the convex envelope ofM is ordering
as well, so we may assume thatM is a convex set.

An observable onR is a mappingx : B(R)→ R+, whereB(R) is the Borel
σ -algebra of the real line, such that

(O1) x(R) = 1,
(O2) if E ∩ F = ∅ thenx(E ∪ F) = x(E)+ x(F),
(O3) if Ei ↑ E thenx(E) =∨∞i=1 x(Ei )
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An observablex is monotone, that is,E ⊆ F implies x(E) ≤ x(F). Owing to
x(R) = 1, the range ofx is contained in the set{a ∈ R : 0≤ a ≤ 1}, that is, in
the effect algebra corresponding toR. We will say that an observablex onR is
projection valued(PV) if its range is contained inP(R).

If x is an observable andm is a state onR, then the composite mapping
m ◦ x : B(R)→ [0, 1] is a probability measure. Iff : R→ R is a measurable
function, thenx ◦ f −1 is also an observable. We can define the expectation of the
observablex ◦ f −1 in a statem in the usual way, and by the integral transformation
theorem we get

m(x ◦ f −1) =
∫
R

f (t) m ◦ x(dt) =
∫
R

tm ◦ f −1(dt).

Definition 4. Let M be an ordering set of states on an ordered algebraR. We will
say that an elementa ∈ R has aspectral decompositionif there is a PV observable
ya such that for everym ∈ M ,

m(a) =
∫
R

tm ◦ ya(dt).

The following so-called existence property has been introduced in Duchoˇn
et al. (1997).

Definition 5. We say thatR has theexistence propertyif for every convexity
preserving mappingν : M → M(B([0, 1])) there is an observabley such that for
everym ∈ M, E ∈ B([0, 1]),

m(y(E)) = ν(m)(E),

where M(B([0, 1]) is the set of all probability measures on Borel subsets of
[0, 1] ⊂ R.

For example, every von Neumann algebra with no TypeI2 direct summand
has the existence property.

Our main result in this section is the following theorem.

Theorem 5. LetR be a Dedekind monotoneσ -complete ordered algebra with
an ordering set of normal states M, having existence property with respect to M.
Then every a∈ R, 0≤ a ≤ 1, has a spectral decomposition.

Proof: Let a ∈ R, 0≤ a ≤ 1. By Proposition, the sequence{an} is monotone.
For every positive linear functionalm,

k∑
j=0

(−1) j

(
k

j

)
m(ak+ j ) = m

(
k∑

j=0

(−1) j

(
k

j

)
ak+ j

)
= m(aj (1− a)k) ≥ 0,
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hence{m(an)} is a completely monotone sequence. By the solution of classical
momentum problem, there is a measureµm onB([0, 1]) such that for everyn ∈ N
and everym ∈ M ,

m(an) =
∫ 1

0
tnµm(dt).

The mapm 7→ µm is convexity preserving; therefore, by the existence property,
there is an observabley : B([0, 1])→ R such that

µm(E) = m(y(E)), E ∈ B([0, 1]).

If p(t) = αntn + αn−1tn−1+ · · · + α1t + α0, define

p(a) = αnan + αn−1an−1+ · · · + α1a+ α0.1,

If p andq are polynomials, then (p · q)(a) = p(a)q(a), by the commutativity of
an, am.

Let f be a continuous function on [0, 1] andpn a sequence of polynomials
converging uniformly tof . Without loss of generality we may assume that‖pn −
pn−1‖∞ ≤ 2−n. Define polynomials

qn = pn − 2−n.

We have

qn − qn−1 = pn − pn−1+ 2−n ≥ −‖pn − pn−1‖∞ + 2−n ≥ 0.

Moreover,

‖ f − qn‖∞ = ‖ f − pn + 2−n‖∞ ≤ ‖ f − pn‖∞ + 2−n→ 0.

It follows that{qn} is an increasing sequence uniformly converging tof.
For everym ∈ M we have∫

qn(t)dµm(t) =
∫

qn(t)m ◦ y(dt)→
∫

f (t) dµm(t)

for everym ∈ M . Thereforem(qn(a))→ ∫
f (t) dµm(dt) for everym ∈ M .

Moreover,

m(qn(a))−m(qn−1(a)) =
∫ 1

0
(qn(t)− qn−1(t))m ◦ y(dt) ≥ 0.

It follows that the sequence{qn(a)} is monotone increasing, and is bounded from
above byK .1, whereK ≥ 0 is the bound off . By Dedekindσ -completeness,
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there is an elementu inR equal to the supremum of the sequence. Putu =: f (a).
By normality of the statesm ∈ M , m( f (a)) = limn→∞m(qn(a)). Moreover, for
everym ∈ M ,∣∣∣∣∫ qn(t) dµm(t)−

∫
f (t) dµm(t)

∣∣∣∣ ≤ ∫ |qn(t)− f (t)| dµm(t)→ 0.

It follows that

m( f (a)) =
∫

f (t) dµm(t) =
∫

tm(y ◦ f −1(dt))

for everym ∈ M .
Let fn ↓ f , gn ↓ g, 0≤ fn, gn ≤ 1 being sequences of continuous functions,

f , g are bounded measurable functions on [0, 1]. Again by Dedekind monotone
σ -completeness we find elementsf (a), g(a) as limits of monotone decreas-
ing sequences of elementsfn(a), gn(a), where for everyn, 0≤ fn(a) ≤ 1, 0≤
gn(a) ≤ 1. We have, by (2) and monotonicity of states,

|m( fn(a)gn(a)− f (a)g(a))|
≤ |m( fn(a)gn(a))−m( f (a)gn(a))| + |m( f (a)gn(a))−m( f (a)g(a))|
≤ |m( fn(a))−m( f (a))| + |m(gn(a))−m(g(a))| → 0.

Now let C be a closed subset of [0, 1],χC its characteristic function. There
is a sequence of continuous functionsfn between 0 and 1 decreasing toχC. Then
for everym ∈ M ,

m( fn(a)) =
∫

fn(t) dµm(t)→ χC(t) dµm(t).

If gn = f 2
n , thengn(t) ↓ χC(t).

So f 2
n (a)→ (χC(a))2 = χC(a). Hencey(C) = χC(a) is a projection. ¤
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Riesz, F. and Sz.-Nagy B. (1955).Leçons d’Analyse Fonctionelle, 3ème edn., Akad´emiai Kiadó,
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